MÁQUINAS ELÉCTRICAS

Créditos: 10

Objetivos

El objetivo de este curso es presentar las máquinas eléctricas de Corriente Continua y de Corriente Alterna, fundamentalmente las de inducción, por su mayor aplicación actual. Desarrollar los modelos y aplicaciones tecnológicas de las máquinas eléctricas que permitan al estudiante contar con conocimientos de los dispositivos de conversión electromecánica.

Metodología de enseñanza

Se dictarán un total de 75 hs. de clase (con una intensidad semanal de 5 horas), de las cuales 35 serán dedicadas a teórico, 30 horas de práctico y 10 horas de laboratorio.

Temario

Parte A - Circuitos magnéticos

- 1. Magnitudes y Leyes básicas de los campos magnéticos.
- 2. Ley de Hopkinson.
- 3. Materiales magnéticos, permeabilidad magnética, ciclo de histéresis, curva de magnetización.
- 4. Energía almacenada en circuitos magnéticos. Fuerza magnética. Imanes permanentes. Pérdidas en el hierro, histéresis, Foucault.

Parte B - Transformadores

- 1. Transformador ideal
- 2. Transformador real
- 3. Tipos de transformadores.
- 4. Transformadores monofásicos.
- 5. Transformadores trifásicos.
- 6. Valores nominales: tensión, corriente, potencia, relación y frecuencia nominal.
- 7. Elementos constructivos del transformador
- 8. Ensayos: Ensayo de relación, vacío, cortocircuito y corrección de valores obtenidos.
- 9. Mantenimiento: mantenimiento a realizar. Aspectos a tener en cuenta.
- 10. Protecciones del transformador: funciones e importancia. Nivel de aceite, termómetro, fusibles, imagen térmica, buchholz, relés secundarios de sobrecorriente y diferenciales.
- 11. Aplicaciones: Puesta en paralelo. Cargabilidad. Rendimiento.

Parte C - Máquinas de CC

- 1. Repaso de los circuitos trifásicos
- 2. Fundamentos de las máquinas eléctricas de CC
- 3. Máquinas de CC (Generadores y Motores)

Parte D - Máquinas de CA

- 1. Fundamentos de las máquinas de CA
- 2. Máquinas sincrónicas
- 3. Motores de inducción
- 4. Generador de inducción

Conocimientos previos exigidos y recomendados

Matrices y Determinantes (Fundamentalmente métodos de resolución), concepto claro de Derivadas e Integrales.

Teoría de circuitos y sistemas trifásicos.

Bibliografía

- Chapman Máquinas eléctricas.
- Kuznetsov Fundamentos de electrotécnica

Anexo

Régimen de Aprobación

El curso será reglamentado, a partir de una evaluación continua, según el puntaje acumulado en las diversas instancias (dos parciales, un parcial a mitad del curso y otro al final) se considerarán las siguientes franjas de aprovechamiento de las pruebas: menos del 25% (notas 0, 1 y 2) pierde el curso, entre 25% y 60% (notas 3, 4 y 5) gana el curso y debe rendir un examen final, y con más del 60% (notas 6, 7, 8, 9, 10, 11 y 12) aprueba la asignatura y exonera.

Área de formación

Electrotecnia y Control

Previaturas

Para cursarla debe tener aprobado el curso de Introducción a la Electrotecnia. Para rendir el examen debe tener aprobados el examen de Introducción a la Electrotecnia y el curso de Máquinas Eléctricas.